Return to the Isle of Puffins
Age, Sex, and Telomere Dynamics in a Long-Lived Seabird with Male-Biased Parental Care
Young, R.C., Kitaysky, A.S., Haussmann, M.F., Descamps, S., Orben, R.A., Elliott, K.H. & Gaston, A.J. (2013) PLoS ONE 8(9):e74931
Abstract
The examination of telomere dynamics is a recent technique in ecology for assessing physiological state and age-related traits from individuals of unknown age. Telomeres shorten with age in most species and are expected to reflect physiological state, reproductive investment, and chronological age. Loss of telomere length is used as an indicator of biological aging, as this detrimental deterioration is associated with lowered survival. Lifespan dimorphism and more rapid senescence in the larger, shorter-lived sex are predicted in species with sexual size dimorphism, however, little is known about the effects of behavioral dimorphism on senescence and life history traits in species with sexual monomorphism. Here we compare telomere dynamics of thick-billed murres (Uria lomvia), a species with male-biased parental care, in two ways: 1) cross-sectionally in birds of known-age (0-28 years) from one colony and 2) longitudinally in birds from four colonies. Telomere dynamics are compared using three measures: the telomere restriction fragment (TRF), a lower window of TRF (TOE), and qPCR. All showed age-related shortening of telomeres, but the TRF measure also indicated that adult female murres have shorter telomere length than adult males, consistent with sex-specific patterns of ageing. Adult males had longer telomeres than adult females on all colonies examined, but chick telomere length did not differ by sex. Additionally, inter-annual telomere changes may be related to environmental conditions; birds from a potentially low quality colony lost telomeres, while those at more hospitable colonies maintained telomere length. We conclude that sex-specific patterns of telomere loss exist in the sexually monomorphic thick-billed murre but are likely to occur between fledging and recruitment. Longer telomeres in males may be related to their homogamous sex chromosomes (ZZ) or to selection for longer life in the care-giving sex. Environmental conditions appeared to be the primary drivers of annual changes in adult birds.

http://dx.doi.org/10.1371/journal.pone.0074931


Notes

Local copy


Links at this site

Links to other sites